Statistical Bulletin Reliability & Variation Research

LEONARD G. JOHNSON EDITOR

DETROIT RESEARCH INSTITUTE

21900 GREENFIELD ROAD . OAK PARK, MICHIGAN 48237 . (313) 968-181

WANG H. YEE DIRECTOR

Volume 6

Bulletin 2

May, 1976

WEIBULL FIELD REPAIR THEORY

I: THE RELATION BETWEEN WEIBULL LIFE AND ENTROPY

A three-parameter Weibull distribution of life X has the cumulative distribution function F(X) defined by the formula

$$F(X) = 1 - Q^{-\left(\frac{X-\alpha}{\theta-\alpha}\right)^{b}}$$

where X = life (variable)

 θ = characteristic life

b = Weibull slope (shape parameter)

F(X) = fraction of the population failed in time X

In particular:
$$F(\propto) = 0$$

$$F(\theta) = 1 - e^{-1} = .632$$
Furthermore: B_Q Life $= \propto + (\theta - \propto) \left(\ln \frac{1}{1 - Q}\right)$
Median Life $(Q=.5) = \propto + (\theta - \propto) \left(\ln 2\right)^{1/b}$
Mean Life $= \propto + (\theta - \propto) \left(1 + 1/b\right)$

ENTROPY at time X is defined as the natural logarithm of the reciprocal of the fraction survived at X. Thus, if we denote the entropy at X by the symbol $\mathcal{E}(X)$, it follows that this entropy has the formula

$$\mathcal{E}(X) = \ln \frac{1}{1 - F(X)}$$

Since
$$F(X) = 1 - Q - \left(\frac{X - \alpha}{\theta - \alpha}\right)^b$$
, we have that
$$1 - F(X) = Q - \left(\frac{X - \alpha}{\theta - \alpha}\right)^b$$
 or
$$\frac{1}{1 - F(X)} = Q + \left(\frac{X - \alpha}{\theta - \alpha}\right)^b$$

Hence, for a three-parameter Weibull, the ENTROPY FUNCTION Has the formula

$$\mathcal{E}(X) = \left(\frac{X - \alpha}{\theta - \alpha}\right)^{b}$$

II: CUMULATIVE FAILURE PROBABILITY IN TERMS OF ENTROPY

As a function of ENTROPY \mathcal{E} , the cumulative probability of failure is

This is an EXPONENTIAL DISTRIBUTION of ENTROPY having a MEAN VALUE of UNITY. Since an exponential distribution has no memory, we can write the following theorem:

THEOREM 1: The MEAN ENTROPY between consecutive failures on the same madine is unity .

III: ESTIMATING THE NEEDED FIELD REPAIRS ON A MACHINE IN ELAPSED TIME X

Let r = Ave. number of repairs in elapsed time X

The accumulated entropy in elapsed time X on a machine with Weibull parameters (<, θ , b) is

$$\mathcal{E}(X) = \left(\frac{X - \alpha}{\theta - \alpha L}\right)^{b}$$

According to THEOREM 1 , the MEAN ENTROPY between consecutive failures is UNITY. Hence, for r repairs in elapsed time X , it follows that

$$\frac{\mathcal{E}(x)}{r} = 1$$

$$r = \mathcal{E}(X) = \left(\frac{X - \alpha}{\theta - \alpha}\right)^{b}$$

Thus, the average number of repairs to be expected in elapsed time X is equal to the ENTROPI at X. Actually, we are dealing with the SUM OF r ENTROPIES TO FAILURE, averaging out to a MEAN VALUE of a UNIT of ADDITIONAL ENTROPY PER FAILURE.

IV: THE THEORETICAL DISTRIBUTION OF THE REPAIR TOTAL PER MACHINE

Since each repair represents an entropy, it follows that we are dealing with a SUM OF r ENTROPIES, where each entropy comes from an exponential distribution whose mean value is unity.

It is well known that a random sum of exponentially distributed items whose mean is unity would have the following statistical parameters:

MEAN =
$$\mathbf{r}$$

STANDARD DEVIATION = $\sqrt{\mathbf{r}}$

SKEWNESS = $\frac{2}{\sqrt{\mathbf{r}}}$

Thus, we can completely describe the distribution of repairs needed on a machine in elapsed time X by a PEARSON TYPE III DISTRIBUTION with these three parameters, where

MEAN NO. OF REPAIRS =
$$r = \left(\frac{x-\alpha}{\theta-\alpha}\right)^b$$

STANDARD DEVIATION (of No. of repairs) = $\sqrt{r} = \sqrt{\left(\frac{x-\alpha}{\theta-\alpha}\right)^b}$

SKEWNESS(of Distr. of repairs) = $\frac{2}{\sqrt{r}} = \frac{2}{\sqrt{\left(\frac{x-\alpha}{\theta-\alpha}\right)^b}}$

V & A NUMERICAL EXAMPLE

PROBLEM:

A certain machine has Weibull parameters

MINIMUM LIFE =
$$\propto$$
 = 40 hours
CHARACTERISTIC LIFE = θ = 280 hours
WEIBULL SLOPE = b = 1.25

Estimate the repairs required in 1000 hours by finding an interval (\mathbf{r}_{L} to \mathbf{r}_{U}) repairs which would represent a 90% confidence interval.

SOLUTION :

The entropy at 1000 hours is
$$\left(\frac{1000 - 40}{280 - 40} \right)^{1.25} = 5.65 686$$

Thus, the AVE. NO. OF REPAIRS in 1000 hours is r = 5.65686

The STANDARD DEVIATION of the No. of repairs in 1000 hours is

$$\sigma = \sqrt{r} = \sqrt{5.65686} = 2.37841$$

The SKEWNESS of the distribution of the no. of repairs is

The lower 5% t-score for skewness 0.84 is $t_{.05} = -1.374$ (See APPENDIX)

The upper 95% t-score for skewness 0.84 is $t_{.95} = +1.847$ (See APPENDIX)

Thus, the LOWER LIMIT of the 90% confidence interval on the required number of repairs in 1000 hours is

$$r_L = r + t_{.05} = 5.65686 - 1.374(2.37841) = 2.38892$$

The UPPER LIMIT of the same 90% confidence band is

$$r_U = r + t_{.95} = 5.65686 + 1.847(2.37841) = 10.04978$$

Thus, with 90% confidence, 2 to 10 repairs will be needed in the first 1000 hours of operation.

For a total of N such machines in the field for 1000 hours each, the repair total would be between 2.38892 N and 10.04978 N with 90 % confidence.

Table of t-Scores for Pearson Type III Quantile Levels

DRI STATISTICAL BULLETIN Vol. 6, Bulletin 2 May, 1976

APPENDIX

t.99	066.	1.087	1,197	1,317	1.449	1.589	1.732	1.880	2.030	2.180	2.326	2,472	2.620	2.765	2.890	3.023	3,150	3.270	3,390	3.500	3,605	
t.95	676	1.020	1,093	1,166	1,243	1,317	1,388	1,458	1.528	1.586	1,645	1.700	1.750	1.797	1.839	1.877	1.910	1.938	1.962	1,982	1.996	
t.90	.895	.945	.995	1,041	1.086	1.127	1.166	1,200	1.231	1.258	1.282	1,304	1.317	1,329	1.336	1.340	1,341	1,337	1,329	1,318	1,303	
t.80	.777	.799	.817	.832	.843	.851	998.	.857	.855	.850	.840	.830	.816	.800	.780	.758	.737	.705	9299	.643	609°	
t.70	.643	.645	.643	.638	.629	.618	° 604	.588	.568	.548	.524	.500	.473	444	.417	.381	.348	,316	.278	.241	.204	
t,60	.489	.475	.459	077.	.418	.390	.369	.342	.314	.284	.254	.238	.189	.156	.122	.088	.053	.018	016	050	084	
t.50	.307	.281	.254	.225	.195	.166	.132	660°	990°	034	0	034	990	660	132	166	195	225	254	281	307	
t.40	.084	.050	.016	018	053	088	122	156	189	238	254	284	314	342	369	394	418	0750-	459	475	489	
t.30	204	241	278	316	348	381	417	777-	473	500	524	548	568	588	604	618	629	638	643	645	643	
t,20	609	643	-,676	705	737	758	780	800	816	830	840	850	855	857	866	851	843	832	817	799	777	
t,10	-1,303	-1,318	-1.329	-1,337	-1,341	-1,340	-1,336	-1,329	-1,317	-1,304	-1.282	-1.258	-1,231	-1.200	-1.166	-1.127	-1.086	-1.041	995	576	895	
t.05	-1.996	-1.982	-1.962	-1.938	-1.910	-1.877	-1.839	-1.797	-1.750	-1.700	-1.645	-1,586	-1,528	-1,458	-1,388	-1.317	-1.243	-1,166	-1,093	-1,020	676	
t.01	-3.605	-3.500	-3.390	-3.270	-3.150	-3.023	-2.890	-2.755	-2,620	-2.472	-2.326	-2.180	-2,030	-1,880	-1.732	-1.589	-1.449	-1.317	-1.197	-1,087	066	
	-2.0	-1.8	-1.6	-1.4	-1.2	-1.0	∞.	9	7	2	0	.2	7.	9.	∞.	1.0	1.2	1.4	1.6	1.8	2.0	

Skewness