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PREDICTING FATIGUE LIFE FROM ULTRASONIC INDICATIONS

Making a daily effort to apply tried and tested concepts
is the best way to help build progress assurance. This operating
principle applies in all phase of man's activities. Certainly
it is the case in scientific research.

The problem of predicting fatigue life is by universal
admission a statistical or probabilistic one. A tested and tried
probability theory in fatigue is the so-called Weibull Theory.
Therefore, in studying non-destructive measuring techniques (such
as ultrasonics) and how they correlate with fatigue life it is
advisable to employ the Weibull theory as a research program
guide, instead of going out on some wild uncharted seas.

It is already decades ago since Weibull came out with a theory
which stated that

‘ 1 )
Life Varies As 1

[étressed Volume Weibull Slope

This Weibull Law for SIZE EFFECT in fatigue will serve as our

basis for studying how ULTRASONIC INDICATIONS are related to

FATIGUE LIFE.
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The Weibull Law which is based on straightforward logic
and the probability of joint but independent events certainly
deserves a fair trial. This is our intention in the present

investigation.

STRESSED VOLUME THEORY

If a unit of volume is subjected to stress and has a
probability Pl(x) of surviving for time x, then two units‘of

volume under the same stress have a probability

2
P2(x) = Pl(xi] of both surving for time x.

Similarly, three units of volume subjected to this same stress

have a probability
3
Ps(x) =[§1(xi] of all surving for time x.
In general, V units of volume will have a probability

'V
Pv(x) =[§l(xi] of surviving for time x at the same original

stress. Unless all V units of volume making up a specimen

survive the time x the specimen is a failure in time x.
Pl(x) is known as the survivorship function for a unit volume.

If a unit volume has a Weibull survivorship function, then

b
P (x) = e (/9 (1)
where 01 = characteristic life of the unit volume

b = Weibull slope



DRI STATISTICAL BULLETIN

Vol. 3 July, 1973
Bulletin 3 Page 3

It follows, therefore, that V units of volume have a joint

survivorship function

(7 )P
P, (x) E’ (x)] % (2)

P(x),e(vé) - )

or,
(3)
where O = characteristic life of V units of volume (jointly)
01
It can be seen that Ov = ~T7B (4)
v constant
In other words, LIFE OF V units of volume = 175 (5)
14

This last relation is known as the SIZE EFFECT THEOREM for
materials having Weibull life distributions. This is the basic
equation for STRESSED VOLUME THEORY when failures obey a Weibull

law of distribution.
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MATERIAL DEFECTS AND THEIR RELATION TO FAILURE

Materials under stress fail because flaws or discontinuities
allow fracture to initiate and propagate. The more flaws present
in a material of given volume the higher the probability of
failure in a given time becomes. This is nothing other than a

version of the SIZE EFFECT THEOREM. why? Because each flaw
represents a stressed volume, and the more flaws present the
greater the stressed volume. This logically follows, especially

since flaws produce stress concentration.

Furthermore, large defects constitute large stressed volumes

and small defects constitute small stressed volumes.

The TOTAL STRESSED VOLUME due to defects is then proportional

to two things: _
FIRST: The number of defects
SECOND: The volume per defect

Suppose a specimen has N defects, each of volume Vl.
The TOTAL DEFECT VOLUME is then V = NVl (6)
According to the SIZE EFFECT THEOREM

constant
LIFE = (7)
vl/b
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Putting V = NV, in (7) we obtain the formula

constant
LIFE = (8)
Nl/bVll/b

If we think of each defect as a sphere of diameter D1 , it

follows that

3 (9)
V, = 1/67TD,

(Note: Even if defects are not spherical, it still follows
that volumes of similar defects are proportional to
the cubes of corresponding dimensions.)

Thus, we may state that

constant

N D

1
This last equation is the theoretical prediction equation for

life in terms of the total number of defects N, and the diameter
per defect Dl » An important theoretical fact to be noted is
that the exponent of the defect diameter is 3 times the exponent

on the number of defects.
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ULTRASONIC INDICATIONS AND THEIR SIGNIFICANCE

An ultrasonic trace of a specimen (say a bearing race)
yields a series of peaks or bumps (frequently called "Blips")
of varying height and spacing typified by what is sketched
in FIGURE 1 below:

SRR | NP —\.‘.,_-JL

FIGURE 1 (Example of Ultrasonic Trace)
Each peak (or indication) represents an inhomogeneity encounter-
ed in the material. Therefore, the number of indications is a

count of the number of inhomogeneities encountered. Furthermore,

the higher a peak (or indication) is, the larger the extent of the
inhomogeneity (i.e., the defect diameter) that produced the peak.
It can be said that indication heights are directly proportional
to defect diameters. As a measure of the TOTAL DEFECT VOLUME

we can take

V = TOTAL DEFECT VOLUME oCN H® (11)
where N = Total number of indications in the trace

H = Median indication height
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If we take the prediction equation (10) and put Dl

proportional to H we will obtain

constant (12)

LIFE = 175375
N H

This last equation (12) is the basic equation for predicting
life from ultrasonic indications.

Three quantities are needed:

FIRST: The total number of indications N
SECOND: The median indication height H
THIRD: The Weibull slope of the life distribution b
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ULTRASONIC ENTROPY THEORY

1
Final Entropy Level = Entropy at Failure = loge
P(XF)
X, = Age at Failure ; P(X;.) = Probability of Surviving
F F t ‘
[+ Age XF.

NUIk: Entropy at any age X is defined mathematically by means of
the logarithmic expression log, P:x y where P(X) is the probability
of surviving to age X.
1 - S 7
Initial Entropy = loge e s [?o = Initial Ag?]
| P(X,)

1
e
P(t + XO)

Entropy at Time t After XO = log

If the survivorship function is ¢f the Weibull type, then

( t4X )b [bxﬁeibull Slope :}
P(t + X ) = éi e @=Characteristic Life

Therefore, 1oge P(t;+ T3] = Entropy at Time t after X
(o]

.(t_+x0 )b
e

For ultrasonic indications of median heightbﬂo and total

o

count N0 the Weibull Theory of Size Effect yields the Life
Prediction Formula

constant 7
N CE N ET Y

o©>

Qo = Predicted Additional Life to Infinite Entropy
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Let us denote Noﬂz by_ﬂlo, Then from (1):

(n Hs)yf’ 2 0

]
S

i
©

b ,
or, NJH> =5l = ( 5 ) = Initial Entropy (2)
4]

Thus it follows that O = XO = Initial Age (at Initial Entropy(),).
This means that a specimen with Entropy(), = Noﬂg is O units

older than a specimen with Zero Entropy.

Failure can be defined to be a state where the remaining life

(to Infinite Entropy) is a certain fractionifof the initial age.

If & = Initial Age
Then failure is where the entropy has attained a value S:Ltf
such that tﬁe predicted additional life to Infinite Entropy

ise, =¥8. (z0).

%)
After running for time t : Ot = 00 -t = TEE%T -t
Pl A
: : § . e _ B D
Failure is the point at which ji;g Ton " t=¥6

Hence, at time of failure t : J§7% = ¥

Tt
/ b
or, /Zt%l -
|
or, ‘fzf = ~ﬁ;7; (Critical Entropy) (3)
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Failure has occurred after a running time history equal to

L, = 9-Y@ (4)
Thus , the actual historical life to failure is
2 (5)
= 8 = - 5
(Am) Y8 =8 g ] Ews Y]
fé\ b
Where {), = Initial Entropy =( 5 ) (b = Webull Slope)
0o

Entropy after running time t is equal to that entropy for

which the remaining historical life is

S
LtaLo-t=00—Kﬁ—t=0t-KO (6)

where l_Ot = 90 - t]
Suppose t is equal to qLo s where q denotes the fraction of the
total historical life which has expired. (0<q<1)

Then 9 Lt = Lo(l - q) 9 ioen 9

¢

-ﬂ—gr'-fa=L(l-Q) (7)
(ﬂ+ = Entropy after running time t)

From (7) : /flf = L(l -q) +¢YQ

L, 7 F 4
4, o CI (8)
Therefore,ﬁ = 5 (1 - q) +¥, or Jzt ;\_d T
From (4) we obtain L /6 =0,/6 - y._ substituting this in (8)

’/b

we get@t/é - p— =
(F 777 = (/vb—x)(f*f)*ar = TR0 y0%)

Equation (2) gives us the theoretical cumulative entropy when

@)

the fraction q of the total historical life has expired.
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THEORETICAL NATURE OF ENTROPY GROWTH CURVES

Equation (9) is the theoretical growth function forJZ?%s. q ,
i.e., for (Entropy)z ve. Life Expiration.

Let us denote the entropy at q byJZg (instead of 24 ).
This means that when the fraction q of the total historical life
has expired the entropy has grown to the value flz_.

The growth equation is /
7 N

= 2 7 (r0)
5& /af (/"_' J_jlab
For q = 0 (i.e., when no life has expired) (10) reduces to
/ /
the identity .04 = j?_a/”

For q = 1 (i.e., when all the life has expired) (10) tells us

‘b
that ﬂ’é i £, o
;= =
I~ 17— ¥97) Y
Thus,_ler-igz = Critical Entropy (as it should) [éee (Si]

The cumulative entropy after the Half-Life has expired is found

by putting q = .5 in (10). This gives

i 1/
_(?_/g _ Ry 2

/ —5(/—-¥0k) pordls = Ea.;[/»m;é):)‘g’

A graphical plot of (10) has the general appearance shown in

(1)

Figure 3.
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GENERAL APPEARANCE OF AN ENTROPY GROWTH CURVE

/

(FNTR 0ry)h /

o 4 .2 .3 4 5 6 .7 .8 9 LO

Expiration Fraction q —— 5

FIGURE 3
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EXPRESSION FOR TOTAL AGE AT A PARTICULAR ENTROPY LEVEL

When the entropy has accumulated to the level.o.g_we know
by definition that the fraction q of the total historical life
Lo has expired.

Furthermore , Lo = 00 - a’ﬁ

Therefore, at the entropy levelﬂj,the historical age is

Glo =26 —2 Yé
To get the total age we simply add the initial age © to the
historical age. Thus, atﬂj,_the Total Age is
Xf‘ = & '+/f5' be = C+ 28, - X§
= 6[/——f3’)~+f§
= rpvrpls)]
= 2 [/73/ + %7 Elr-z(v-3 %):] (12)

From (10) : __Q(;/b — (/‘"f)ﬂé-// (/-3)
/ - ? X-—‘(ff 5
Substituting (13) into (12) yields the result

Total Age at EntropyJi= x_ = ___ <& . ] - s Y
%‘ 4 ('/7.‘);07’? g,—r{ r 7)')
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SLOPE OF THE ENTROPY GROWI'H CURVE

THEOREM: The slope of the entropy grogwth curve at the time when
the fraction q of the historical l1life has expired is given by
the derivative formula

{

Ay _ by, (i’é;e)b. / (15)
{j? Zz_ By,
PROOF :
-b
From (10)-Jl, = z g = «—Qa[/ﬂ? /- XJZ‘}!’_)]

2y -2 (/-y} )"

Differentiating This with respect to q yields

p//f@ _ SN (/- ¥, - 0, (/- ¥ 2,%)
i = - - ;
G -p(s- y . %)) /=g (/-x k)
| %

. N j _ (L
ANow, /- ?{/ — B/J/Z;/b) == (%)) /b) and /-3}2‘1/":%
3 2

Hence |, j—Qg; — A'jS[/-‘[‘P;)%]
e \ b
4 #%)

= ‘“A? “ [(%)%- /

Q. £ D,
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DERIVATIVE OF _Qj/” WITH RESPECT TO q
Since the growth curve in Figure 3 1s 3 plot ofl%fﬁvs. q,
b
it is important to know the formula for ——1?—, since such a formula

h

represents the slope of the curve at any point.

By Elementary Differential Calculus:

/. L
——_ﬁj‘;é ‘T;" f ): 'Q,j} ("{f ) He)

e

AR, _
The value of :%zéls given by (15) , i.e. ,

4 ssfizafh

Substituting this last expr9331on forféﬁz in (16) gives
G/D? Q? 5ﬁ’1§ |
R . a7
J{; ﬁQ' s B '

By putting q = O and q = 1 , respectively, into (17) we
arrive at the following formlas for initial slope and final

slope in Figure 3:

% B0\ 4 ’
Initial Slope = [_Jfl} = Z;w :'% (Hﬁo) ﬁﬂ:ﬂf{/' ¥2,°)  (18)
dﬁa (f =0) /a;—-:ua f LS

1y ly J
C{leé ;Lé;é (;{Ei)/@ _ ] /—-BLQJZ

Final Slope ( _ 1
4 g™ 7 5 Y0l

9)
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ANOTHER FORMULA FOR TOTAL AGE AT ENTROPY LEVEL

N | T
By definition: f’ logeP(Xq)
Xq = Total Age at Entropy Level ‘ﬂ‘j‘
P(X) = Survivorship Probability ot Age X. )b

For Weibull type of survivorship probability: P(X) = ¢

Under such a Weibull Assumption: "JQV? sy #,ebyﬁ fjﬁﬁ%)::(/zﬁij

(20)

Furthermore, the predicted additional life (to infinite entropy) is

é;
é),:: =

-1
( & = Initial Age)

~7
ZQZL (21)
From (21): _jZ (9 A (22)
A~
Equating (20) and (22) : OF i% - ()
63’ J P - (_[_/ (23)
LI &
From (23): X, = ‘9"‘9 - 0= .
g Z] -—f(@,—m) g [-Y(E )J
e 74
Putting —— =_S2ﬁ in the last expression gives
0o ég g
tal Age at
Xy = A E:trop _J (24)
I /=g (/- ¥2,°) y‘Qﬁ-
Putting q = 1 in (24) we obtain the total age at failure (i.e.,
when all the historical life has expired) as
N
A
¥ = & N < _ b
/- - = - T (25)
¥

/=107~ ¥2k%) y 5.8
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CONFIDENCE LEVELS FOR ENTROPY AT FAILURE

The quantile level Q of failure is determined by the

quantile level Q of entropy to failure. In other words, the

entropy at failure (denoted by.f)) has a distribution function

related to the Weibull distribution of life to failure. The

Weibull function for the life of the specimen is , expressed as

F(X) , for the probability of failure in

running time X , is

Note:

4
Flx) = /—@'(*"‘}&"):67

(26)

q and Q are not the same.
q is a fraction of the
quantile level of final
failure.

Corresponding to this Weibull function for fatigue life we have

the following cumulative distribution function for the entropy

at failure:
&

— S JZ 7

= / = 6 Z (27)

In thjs lasi expressionma&ﬁ% represents the entropﬁ,asmueasured

for this reason the scale factor k is introduced. From (27) we

obtain the following tabulation of Measured Entropy at failure

versus the confidence, or quantile level

Cube Root of Measured
Measured Entropy ,'
Confidence Level Entropy at Failure( _Q‘é}
at Fallure&;ﬂ;,) Q (thl in Ultrasonic§3
Kk .632 k"/3
ok .865 1.26k 73
2.3k .900 1.32k /2
3k .950 1.44k /3




