Statistical Bulletin

Reliability & Variation Research

DETROIT RESEARCH INSTITUTE

15224 KERCHEVAL AVE. • GROSSE POINTE PARK, MICHIGAN 48230 • (313) 499-1150

Leonard G. Johnson, EDITOR

Vol. 1

Bulletin No. 6

November, 1971

Page 1

RELIABILITY OPTIMIZATION

IN COMPLIANCE TESTING

Assuming N items tested annually with all of them passing.

Questions: (1) What is the optimum reliability?

(2) What is the optimum annum test sample size N?

ANSWERS

I: For a go - no go model

(1)
$$R_{opt}$$
 = 1 - $\sqrt{\frac{c_T}{T_F} (P_1 - P_0)}$

(Optimum Reliability)

(2)
$$N_{opt}$$
. = $\sqrt{\frac{T^{C}_{F} (P_{1} - P_{0})}{C_{T}}}$ - 2

(Optimum Sample Size)

 C_T = Cost of testing 1 item

 C_F = Cost per socially bad result

 P_0 = Probability of a socially bad result for all items which comply

P₁ = Probability of a socially bad result for those items which do not comply

T = Total items produced (i.e., sold) annually

II: For A Linear Model

A linear model assumes a linear interpolation from P_0 to P_1 which is directly proportional to the fraction of the population not complying, i.e., for reliability R, the fraction not complying is (1-R), and the probability of a socially bad result for the non-complying items is

$$P_{1-R} = P_0 + (1-R) (P_1 - P_0)$$

Note that the probability P_1 is reached only when R = 0, i.e., only when the entire population fails to comply.

In this case:

(1)
$$R_{opt.} = 1 - \sqrt{\frac{3}{2T^{C_F} (P_1 - P_0)}}$$

(2)
$$N_{\text{opt.}} = \sqrt{\frac{2T^{C}_{F} (P_{1} - P_{0})}{C_{T}}} - 2$$

III: For A Kth Power Model

In a $K^{\underline{th}}$ power model we assume the transition from P₀ to P₁ is proportional to the $K^{\underline{th}}$ power of the fraction not complying, i.e.,

$$P_{1-R} = P_0 + (1-R)^K (P_1 - P_0)$$

Probability of a socially bad result for each non-complying item when the population reliability is R

In this case:

(1)
$$R_{\text{opt.}} = 1 - \left[\frac{C_T}{(K+1) T_F^C (P_1 - P_0)} \right]^{\frac{1}{K+2}}$$

(2.)
$$N_{\text{opt.}} = \frac{(K+1) T^{C}_{F} (P_{1} - P_{0})}{C_{T}} \frac{1}{K+2} - 2$$

DERIVATION OF THE OPTIMUM RELIABILITY

Our objective is to minimize the total cost where

Total cost = testing cost + social cost

Testing N items at a cost of C_T each gives a testing cost $C_{testing} = N^C_T$.

If the population reliability is R, then for T items produced there would be T (1 - R) which do not comply. These T (1 - R) each have a probability $P_{1-R} = P_0 + (1-R)^K$ ($P_1 - P_0$) of producing a socially bad result (such at death or disabling injury in the case of safety related compliance)

The $\underline{social\ cost}$ of having these T (l - R) not complying is then (at cost C_F per socially bad result)

the difference

$$T(1-R) C_F P_{1-R} - T(1-R) C_F P_0 = T(1-R) C_F (P_{1-R} - P_0)$$

$$= T(1-R)^{K+1} C_F (P_1 - P_0)$$

Thus, the social cost is

$$C_{social} = T(1-R)^{K+1} C_F (P_1 - P_0)$$

Page 5

Let Y = Total Cost

Then

Y = C_{testing} + C_{social}

 $V = NC_T + T (1 - R)^{K+1} C_F (P_1 - P_0)$

For a Go - No Go Model : K = 0

For a Linear Model: K = 1

With N tested and all passing we estimate the average reliability to be

$$R = \frac{N+1}{N+2}$$

Hence, $N = \frac{2R-1}{1-R}$

and $Y = C_T \left(\frac{2R-1}{1-R} \right) + T_F^C (P_1 - P_0) (1-R)^{K+1}$

To find the optimum R we differentiate this total cost function with respect to R and equate the derivative to zero and solve for R.

Thus,

$$\frac{dy}{dR} = \frac{C_T}{(1-R)^2} - T(K+1)C_F(P_1 - P_0)(1-R)^K = 0$$

$$\frac{c_{T}}{(K+1) T_{F}^{C} (P_{1} - P_{0})}$$

From this:

$$R_{\text{opt.}} = 1 - \left[\frac{C_{\text{T}}}{(K+1) T_{\text{F}}^{\text{C}} (P_{1} - P_{0})} \right]^{\frac{1}{K+2}}$$

Since
$$N = \frac{2R - 1}{1 - R}$$
 it follows

that

$$N_{\text{opt.}} = \frac{2 R_{\text{opt.}} - 1}{1 - R_{\text{opt.}}}$$

$$= \frac{(K+1) T^{C}_{F} (P_{1} - P_{0})}{C_{T}}$$

Page 7

Bulletin No. 6

TYPICAL COST ANALYSIS FOR A SAFETY ITEM ASSUMING A LINEAR MODEL

Suppose a car driver who purchases a car from a manufacturer whose cars comply 100% with a government standard on a particular safety item has 1 chance in 30,000 annually of being killed due to impact from the particular item. Before such a standard was required there was 0% compliance, and the probability of a driver being killed in any year due to impact from the item was 1 chance in 10,000. If the annual sales for this line of cars is 1 million, and if each car test costs \$4000 and each fatality costs \$80,000, what is the optimum reliability level for compliance, and how large a sample should be tested annually with all cars in the sample passing?

Tabulating The Total Cost

We have T =
$$10^6$$
 Let N = Test Sample Size $C_T = \$4000$, $P_1 = \frac{1}{10,000}$ $C_F = \$80,000$, $P_0 = \frac{1}{30,000}$ Testing cost = C_T N = 4000 N

Social cost = T (1-R)² C_F (P₁ - P₀) (for a linear model)
For N successes in N trials:
$$R = \frac{N+1}{N+2}$$
 (avg. reliability)
 $\therefore 1-R = \frac{1}{N+2}$ \therefore social cost = $\frac{T^{C_F}(P_1 - P_0)}{(N+2)^2}$

WE CAN THUS FORM THE FOLLOWING COST TABLE

(1)	FOR DIFFERENT VAL	LUES OF N (THE T	TEST SAMPLE SIZE)	(5)
N	4000 N C _T N	$\frac{5,333,333}{(N+2)^2}$ $\frac{T^{C_{F}}(P_{1}-P_{0})}{(N+2)^2}$	(2)+(3)	N+1 N+2
TEST SAMPLE SIZE	TESTING COST	SOCIAL COST	TOTAL COST	RELIABILITY LEVEL
///////////////////////////////////////				
2	\$8000	\$333,333	\$341,333	.7500
4	\$16,000	\$148,148	\$164,148	.8333
6	\$24,000	\$ 83,333	\$107,333	.8750
8	\$32,000	\$ 53,333	\$ 85,333	.9000
10	\$40,000	\$ 37,037	\$ 77,037	.9167
12 (Optimum)	\$48,000	\$ 27,211	\$ 75,211 (Min.Cost)	.9286 (Optimum)
14	\$56,000	\$ 20,833	\$ 76,833	.9375
16	\$64,000	\$ 16,461	\$ 80,461	.9444
18	\$72,000	\$ 13,333	\$ 85,333	.9500
20	\$80,000	\$ 11,019	\$ 91,019	.9546
11111111111111	111111111111111111111111111111111111111	111111111111111111111111111111111111111	///////////////////////////////////////	111111111111111111111111111111111111111

From this cost table we see that the optimum integral test sample size is

Furthermore, the optimum reliability is

$$R_{\text{opt.}} = \frac{N_{\text{opt.}} + 1}{N_{\text{opt.}} + 2} = \frac{13}{14} = .9286$$

On page 2 we gave the formula for $R_{\mbox{\scriptsize opt.}}$ in a linear model. This was

$$R_{\text{opt.}} = 1 - \sqrt{\frac{3}{27^{\circ}_{F} (P_{.1} - P_{0})}}$$

$$= 1 - \sqrt{\frac{4000}{2\times10^{6} \times 80,000 (\frac{1}{10,000} - \frac{1}{30,000})}}$$

$$= 1 - \sqrt{\frac{4000}{2\times10^{6} \times 80,000 \times \frac{2}{30,000}}}$$

$$= 1 - \sqrt{\frac{12,000}{32,000,000}}$$

$$= 1 - \sqrt{\frac{3}{.000375}} = 1 - .07211 = .92889$$

Also on page 2, the formula for Nopt. is

$$N_{\text{opt.}} = \sqrt[3]{\frac{2T^{C}_{F}}{C_{T}}} \frac{(P_{1} - P_{0})}{C_{T}} - 2$$

$$= \sqrt[3]{\frac{2x10^{6} \times 80,000 \left(\frac{1}{10,000} - \frac{1}{30,000}\right)}{4000}} - 2$$

$$= \sqrt[3]{\frac{32,000,000}{12,000}} - 2$$

$$= \sqrt[3]{\frac{2666.667}{12,000}} - 2$$

$$= 13.86722 - 2$$

$$= 12 \text{ (to nearest integer)}$$

The cost table thus agrees with the optimum values of N and R as found from putting $\frac{dy}{dR}$ equal to zero.

Optimal Compliance Testing When N Measurements Are Weibully Distributed With Slope And A Maximum Of $X_N \longrightarrow X_0 = STD$.

(Assuming a Kth power model)

The total cost Y is given by

$$Y = NC_T + C_F^T (P_1 - P_0) (1 - R)^{K+1}$$

N = Test sample size

 C_{T} = Cost per test item

CF = Cost per socially bad result

T = Total annual sales

P₁ = Probability of a socially bad result when the population has 0% compliance

P₀ = Probability of a socially bad result when the population has 100% compliance

R = Reliability (with regard to compliance)

K = Exponent in the assumed model, such that the probability of a socially bad result for non-compliers (when reliability = R) is

$$P_{1-R} = P_{0} + (1-R)^{K} (P_{1} - P_{0})$$

In case the N measurements (which are all supposed to remain below the gov't standard of X_0) have a Weibull distribution of slope k, it follows that the reliability is (on the average),

$$R = 1 - \left(N + 1\right) - \left(\frac{X_0}{X_N}\right)^2 = 1 - \left(N + 1\right) - \frac{1}{e^2}$$

 $(X_N = largest of the N measurements)$

..
$$Y = NC_T + C_F^T (P_1 - P_0) (N + 1) - \frac{K+1}{Q^2}$$

setting
$$\frac{dy}{dN} = 0$$
 we obtain

$$\frac{dy}{dN} = C_{T} - C_{F}^{T} \quad (P_{1} - P_{0}) \left(\frac{K+1}{P^{2}}\right) \left(N+1\right)^{-\frac{K+1}{P^{2}}-1} = 0$$

from this we obtain

Nopt. =
$$\frac{(K+1) C_{FT} (P_{1} - P_{0})}{C_{T} e^{2r}} - 1$$

Then
$$R_{opt.} = 1 - (N_{opt.} + 1)^{-\frac{1}{Q \cdot R_{opt.}}}$$

or $R_{opt.} = 1 - \left[\frac{c_T \cdot Q^{-\frac{1}{N}}}{(K+1) \cdot C_F^T \cdot (P_1 - P_0)} \right]^{\frac{1}{K+1} + Q^2}$

$$Q = \frac{X_N}{X_0} \leq 1$$

$$Q^{-\frac{1}{N}} = \left(\frac{X_N}{X_0} \right)^{\frac{1}{N}} = \left(\frac{Q^{-\frac{1}{N}}}{X_0} \right)^{\frac{1}{N}} \ln (N+1)$$

the relation between X_{N} and heta is

$$X_{N} = \Theta \left(\ln \frac{1}{1 - \frac{N}{N+1}} \right)^{\frac{1}{2}} = \Theta \ln^{\frac{1}{2}} (N+1)$$

thus,
$$= \frac{X_N}{\ln^{\frac{1}{2}}(N+1)}$$

NUMERICAL EXAMPLE

Suppose
$$T = 10^6$$
 $C_T = 4000
 $P_1 = \frac{1}{10,000}$
 $C_F = $80,000$
 $P_0 = \frac{1}{30,000}$
 $A = 2$; $A = .9$

(Weibull)

(Max. observed value is 90% of STD. X_0

Then (assuming a linear model with K = 1)

= 9.313 or 10 (to next integer)

Thus, 10 of these items should be tested annually provided the largest of 10 is 90% of the Gov't spec. $\rm X_{\odot}$.

In case N_{opt} = 10 we can calculate the optimum reliability as follows:

$$R_{\text{opt.}} = 1 - (N_{\text{opt.}} + 1)^{-\frac{1}{2}}$$

$$= 1 - (11)^{-\frac{1}{81}}$$

$$= 1 - (11)^{-\frac{1}{81}}$$

$$= 1 - (11)$$

$$= 1 - .0518$$

$$= .9482$$

For the fractional value of $N_{\rm opt.}$ = 9.313 the theoretical optimum reliability $R_{\rm opt.}$ is

$$R_{\text{opt.}} = 1 - (10.313)^{-\frac{1}{.81}}$$

$$= 1 - (10.313)^{-\frac{1}{.81}}$$

$$= 1 - (10.313)^{-\frac{1}{.81}}$$

$$= 1 - (0.313)^{-\frac{1}{.81}}$$

$$= 1 - (0.313)^{-\frac{1}{.81}}$$

$$= 0.056093$$

$$= 0.943907$$