LEONARD G. JOHNSON

DETROIT RESEARCH INSTITUTE

P.O. BOX 36504 • GROSSE POINTE, MICHIGAN 48236 • (313)886-7724

WANG H. YEE

Volume 8

January, 1979

Bulletin 7

Page 1

CONFIDENCE BAND CONSTRUCTION FOR "SUDDEN DEATH" POPULATION PLOTS ON PROBABILITY PAPER

INTRODUCTION

The following question is often asked:

"How can a confidence band be constructed for a "Sudden Death" population Weibull plot?"

It is in answer to this particular question that this short bulletin has been prepared.

"S UDDEN DEATH" POPULATION PLOT

(ORDER NUMBERS FOR DETERMINING MEDIAN RANKS)
(K = GROUP SIZE) (r = NO. OF FAILURES)

FAILURE NO.	ORDER NUMBER IN N = r K
1	$O_{I} = 1$
2	$O_2 = 1 + \frac{N}{1 + N - K}$
3	$O_3 = 1 + \frac{N}{1 + N - K} + \frac{N(N - K)}{(1 + N - K)(1 + N - 2K)}$
4	$O_4 = 1 + \frac{N}{1 + N - K} + \frac{N(N - K)}{(1+N-K)(1+N-2K)} + \frac{N(N - K)(N - 2K)}{(1+N-K)(1+N-2K)(1+N-2K)}$

ETC.

Median Ranks of the failures are calculated by using a sample size N = r K, together with the order number O_i for failure number j.

DRI STATISTICAL BULLETIN

Volume 8

Bulletin 7

January, 1979

Page 2

EXAMPLE: (N = 40) (K = 8 = Group Size) (r = 5 Failures)

FAILURE NO.	, ORDER NO. IN 40	MEDIAK RANK (BENARD'S FORMULA)
1	1	.0173
2 .	$1 + \frac{40}{30} = 1 + 1.21212 = 2.21212$. 0473
3	$2.21212 + \frac{(40)(32)}{(33)(25)} = 3.76364$. 0857
4	$3.76364 + \frac{(40)(32)(24)}{(33)(25)(17)} = 5.95401$. 1400
5	5. 95401 + $\frac{(40)(32)(24)(16)}{(33)(25)(17)(9)}$ = 9. 84801	. 2363

ORDER NUMBERS AND SAMPLE SIZES FOR THE CONFIDENCE BAND OF A "SUDDEN DEATH" POPULATION PLOT

FAILURE NO.	SAMPLE SIZE	ORDER NO. FOR 5% AND 95% RANKS
1	N	1
2	N - K	$.3 + (O_23)(\frac{N-K+.4}{N+.4})$
3	N - 2K	$.3 + (O_33)(\frac{N-2K+.4}{N+.4})$
4	N - 3K	$.3 + (O_43)(\frac{N - 3K + .4}{N + .4})$
•	•	•
¥	¥	•
	•	
r	N - (r - 1) K	$.3 + (O_r3) (\frac{N - (r - 1)K + .4}{N + .4})$

To construct the 90% Confidence Band , use the order numbers in Column 3 together with the Sample Sizes in Column 2 to determine the 5% Rank and the 95 % Rank at each failure abscissa .

DRI STATISTICAL BULLETIN

Volume 8

Bulletin 7

January, 1979

Page 3

CONFIDENCE BAND DATA FOR THE EXAMPLE IN WHICH N = 40 IS BROKEN UP INTO 5 GROUPS OF 8 EACH, I.E., r = 5 AND K = 8

FAILURE NO.	SAMPLE SIZE	ORDER NUMBER FOR 5% AND 95% RANKS
Ī	40	.1
2	32	$.3 + (2.212123)(\frac{32.4}{40.4}) = 1.83348$
3	24	$.3 + (3.763643)(\frac{24.4}{40.4}) = 2.39190$
4	16	$.3 + (5.954013)(\frac{16.4}{40.4}) = 2.59519$
5	8	$.3 + (9.848013)(\frac{8.4}{40.4}) = 2.28523$

Now to construct the 90 % Confidence Band for this population plot , we determine the

5% and 95% Ranks of #1 in 40 for Failure No. 1,

5% and 95% Ranks of #1.83348 in 32 for Failure No. 2,

5% and 95% Ranks of #2.39190 in 24 for Failure No. 3,

5% and 95% Ranks of #2.59519 in 16 for Failure No. 4,

5% and 95% Ranks of #2.28523 in 8 for Failure No. 5 ,

DRI STATISTICAL BULLETIN

Volume 8

Bulletin 7

January, 1979

Page 4

BY LINEAR INTERPOLATION IN 5% AND 95% RANK TABLES, WE FIND THE PROPER PLOTTING POSITIONS FOR THE FIVE FAILURES IN THE EXAMPLE WITH K=8 AND r=5 (N = 40) TO BE AS FOLLOWS:

FAILURE NO.	5 % RANK	95 % RANK
1	.00128	. 07216
2	.00993	. 13144
3	.02282	. 20519
4	.04082	. 31150
5	.06485	. 50748

USING THESE CALCULATED 5% RANKS AND 95% RANKS, WE CONSTRUCT THE CORRECT CONFIDENCE BAND FOR A "SUDDEN DEATH" POPULA - TION LINE FOR ANY CASE IN WHICH K = 8, r = 5, AND N = 40.