Statistical Bulletin Reliability & Variation Research

DETROIT RESEARCH INSTITUTE

900 GREENFIELD ROAD . OAK PARK, MICHIGAN 48237 . (313) 968-1811

LEONARD G. JOHNSON EDITOR

Vol. 5

Bulletin 2

WANG H. YEE DIRECTOR

May, 1975

Page 1

SIMPLIFIED WEIBULL COMPARISON CONFIDENCE THEORY --- (AT ANY DESIRED LOWER QUANTILE)

INTRODUCTION: Exact Comparison Confidence Formulas at the First Order Statistic Level and at the Mean Level.

Assume two neighboring samples, each of size N and of the same Weibull slope b.

Let θ_1 = Characteristic Value of Sample #1 (on the left)

Let θ_2 = Characteristic Value of Sample #2 (on the right)

This is represented graphically in FIGURE 1 below:

NOTE: FIGURE 1 above represents a plot of two neighboring samples on Weibull Probability Paper.

Vol. 5

Bulletin 2

May, 1975

Page 2

At
$$\frac{.7}{N+.4}$$
 level: $C = \frac{1}{1 + (\frac{\theta_2}{\theta_1})^{-b}} = \frac{1}{1 + (\frac{\theta_2}{\theta_1})^{-b}}$

NOTE: $\frac{.7}{N + .4}$ = Median Rank of $1\frac{st}{}$ in N

 $Q = Characteristic Value Ratio = \frac{\theta_2}{\theta_1}$

C = Confidence that (2) is better than (1)

AT MEAN Level;
$$C = \frac{1}{1 + \left(\frac{\theta_2}{\theta_1}\right)^{-b\sqrt{N}}} = \frac{1}{1 + e^{-b\sqrt{N}}}$$

Let Q_1 = Quantile Level of $1\frac{st}{N}$ in $N = \frac{.7}{N + .4}$

Let
$$Q_{M}$$
 = Quantile Level of the Mean = $1 - Q$:

Then:

At
$$B_{Q_1}$$
: Confidence (of a difference) = $C_1 = \frac{1}{1 + e^{-b}}$

At
$$B_{Q_M}$$
: Confidence (of a difference) = $C_M = \frac{1}{1 + e^{-b\sqrt{N}}}$

(NOTE: These formulas are exact.)

Vol. 5

Bulletin 2

May, 1975

Page 3

II EMPIRICAL EXTENSION:

At the quantile level of the $j\frac{th}{}$ in N , i.e., at BQ_j , define the Comparison Confidence by the formula

$$C_{j} = \frac{1}{1 + e^{-b\sqrt{2j-1}}}$$
 (1)

This gives
$$C_1 = \frac{1}{1 + 2^{-b}}$$
 for $j = 1$,

and gives
$$C_{M} = \frac{1}{1 + e^{-b\sqrt{N}}}$$
 for $j = \frac{N+1}{2}$

Thus, by means of the Empirical Extension Formula (1) above, We have maaged to find a way of interpolating between j=1 and $\frac{N+1}{2}$.

DRI STATISTICAL BULLETIN

Vol. 5

Bulletin 2

May, 1975

Page 4

III REVISING THE EMPIRICAL EXTENSION FORMULA IN TERMS OF QUANTILE LEVEL Q AND TOTAL DEGREESOF FREEDOM T.

The quantile level $\,Q\,$ for the $j^{\mbox{th}}\,$ value in $\,N\,$ has the Median Rank Formula

$$Q = \frac{j - .3}{N + .4}$$

Hence,

$$j = .3 + Q(N + .4)$$

..
$$2j - 1 = 2Q(N + .4) - .4$$

= 2QN

$$\approx 2QT^{1/2}$$

$$T = Total Degrees of Freedom = (N - 1)^2$$

Therefore, a simplified CONFIDENCE FORMULA at the Quantile Level $\, {\bf Q} \,$ is

$$C_{Q} = \frac{1}{1 + e^{-b T^{1/4} \sqrt{2 Q}}} \qquad (0 \le Q \le .5)$$

DRI STATISTICAL BULLETIN

Vol. 5

Bulletin 2

May, 1975

Page 5

IV COMPARISON CONFIDENCE FORMULAS FOR SPECIAL LOWER QUANTILE Q

P = Observed Life Ratio (at Quantile Q)

b = Weibull Slope

T = Total Degrees of Freedom = $(N_1 - 1)(N_2 - 1)$

 $N_1 = Size of Sample #1 (On the left)$

 N_2 = Size of Sample #2 (On the right)

<u>WARNING</u>: θ is equal to $\left(\frac{\theta_2}{\theta_1}\right)$ only when the Weibull slopes are equal.

At Q = .01:
$$C = \frac{1}{1 + e^{-.14142 \, b \, T^{1/4}}}$$

At Q = .05:
$$C = \frac{1}{1 + (2.31623 \text{ b T}^{1/4})}$$

At Q = .1 : C =
$$\frac{1}{1 + e^{-.44721 \text{ b T}^{1/4}}}$$

At Q = .2 : C =
$$\frac{1}{1 + e^{-.63246 \text{ b T}^{1/4}}}$$

At Q = .3:
$$C = \frac{1}{1 + e^{-.77460 \, b \, T}}$$