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BIOMEDICAL STATISTICS

I Statistical Design

It is the purpose of this paper to introduce into medical research, both basic
and clinical, some statistical methodology and procedures that are new in this area.
The techniques are not new, some having been used in industry for several years,
but their application to the biomedical area has been with a few exceptions neg-
lected.

The rewarding attributes of these procedures are that they are realistic in
their usefulness in "real 1ife" situations, they are effective when dealing with
small samples from large and unknown populations, they can and often do make use
of intuition or previous information. They are also quite simple to apply "cook
book" style, yet are understandable from a theoretical view point without requir-
ing statistical background.

The procedures that are to be emphasized are methods of using order statis-
tics, methods for determining the parameters of a three parameter Weibull distri-
bution, and methods for using this distribution both in statistical analysis and
statistical inference. In applying these methods to real problems there will be
of necessity some discussion of Bayesian statistics or the art of using personal
probabilities in the evaluation of probiems. We do not wish to get involved in
an argument concerning the semantics of using the word Bayesian in regard to
intuitive or personal probabilities. Nor do we wish to argue with "classic"
statisticians as to the rightness or wrongness in the Bayesian approach. We hope
it will become evident that in solving a real probiem in clinical medicine, the

concept of a personal probability cannot be ignored.



This paper has been written primarily for the clinical investigator. While
it is not our purpose to make a statistician of him, it is our purpose to make it
clear to him that "statistics" concerning his work are of use only to him and no
one else. Statistics is a very personal thing. The only function that statistics
perform is to give him a sense of confidence about his feeling of certainty or
uncertainty about some problem he is facing. The probiem he is facing may be a
universal problem; however, the statistics concerning the problem is the statis-
tics of his feeling about the problem and all its aspects. The statistics then
is not universal. These last statements must be modified. If the approach of
classical statistics is used the statements generally hold true. If, on the other
hand, order statistics ds used, much can be said about the certainty or uncer-
tainty of the information or data that is available about the problem under con-
sideration regardless of the feeling or assumptions made by the investigator.

What are the requirements then for the statistical design of an experiment?
The most important requirement is just good common sense. The entire experiment
must be looked at with proper perspective. What is the purpose of the research,
what will it cost in time and money, are the possible rewards worth the effort,
and what is the methodology to be used? The questions must first be answered in
an informal yet orderly and common sense fashion. Then a more rigorous approach
to the design must be established. What is the purpose of the research? We here
assume that with today's costs in time and money, a research project does have a
real purpose, at least as far as the investigator is concerned. He must then,
for a realistic pursuance of the research problem, state that problem in a concise,
consistent and somewhat rigid manner. It is here that we first meet the concept
of personal probability. The investigator has met some problem through his exper-
jence that challenges him. It is because he has some personal views of the prob-

lem that he wishes to pursue it to establish for his own benefit whether his ideas



are right or wrong. This then is the second requirement in a statistical design,
a concise and proper statement of the problem.

The third requirement is the formulation of a plan of action based on the
results of the solution of the problem. This requirement is seldom met in medical
research and if it is considered it is usually on a haphazard basis. With today's
economy and cost consciousness about research, a project which when completed does
not provide a definite decision about further activity based on the resulits of the
research has 1ittle or nothing to merit its undertaking. The pursuant action may
be a simple decision to desist from further concern about the problem; it may be
a decision to continue activity in a different direction; or it may be a decision
to implement a new clinical procedure or treatment. In any case the rules for
arriving at these decisions must be established before the research takes place.
Unfortunately, this is not a simple step. In the current practice of classical
biostatistics, emphasis is placed on preventing the investigator from rejecting
a hypothesis when it is true, but little is done to protect him from accepting the
hypothesis when it is false. This “significance" testing plays a major role in
the current practice of statistical inference. This practice has many pitfalls,
both in the use of "significance levels" as a basis of hypothesis testing and in
the acceptance of several "assumptions" in applying the statistical modeis to the
data available. It is in this area that the investigator has failed the most in
his responsibility to the decision process. He must assign a "utility" to a
correct decision and a "risk" to a wrong decision. Only he can do that and again
we meet the reality of a personal probability, a personal feeling of how useful is
the utility and how risky is the risk. This problem becomes much less of a problem
if we consider hypothesis in the 1ight of "confidence" rather than "significance".
By doing this we consider at the same time not only the risk of accepting as wrong,

what is right, but also the risk of accepting as right, what is wrong.



Order statistics as we shall see can be a very powerful tool in establishing
these "confidences" and the further use of the Weibull distribution can give added
latitude in their applications,

The next requirement for a statistical design is the method of collecting
data or information to be used in solving the problem. It must be remembered that
data collection devices are not, in the real world, noise free. In other words,
when you collect data from an experiment that data represents, both the information
that is generated by experiment, plus the noise generated by the data collector.
This data collector may be instruments, people or a combination of both. In any
case, it will have some noise. The statistical design then will have a data
collection device that is as simple as it can be made to eliminate sources of
noise. Also, the investigator must know the system so that he can best appraise
the noise that is present.

It follows that the next stage in the method is one that provides a method of
separating the information from the noise in the data. We must turn to statis-
tical methods for this operation. We wish to call this statistical analysis. We
expect from this operation to have some insight into the character of the information.
The noise should be filtered out. We would hope to establish some order to the
data, different modes should be identified if they are present and hopefully some
knowledge of the distribution functions underlying the samples could be suggested.

The final step in the statistical design we shall call statistical inference.
It is with this step that we come to conclusions about comparisons of our samples
of information concerning the problem as it was stated. At this stage, we relate
our data samples to statistical mathematical models and by inductive reasoning
come to some conclusions, with a stated amount of certainty or uncertainty about

the real world these samples represent.



IT  Order Statistics

It is time to discuss order statistics. First, however, we should generalize
on statistics as used in analysis and inference. Statistics is used to make
inferences about populations that are so large as to be for practical purposes
immeasurable. We take, therefore, samples from these populations, measure the
samples and by statistics refer the sample measurements to the total population.
With classical statistics, this is at best a risky business. For example, we
assume that the population does not change with time, what's true today is true
tomorrow. We identify these populations by one or more characteristics that
attract our interest. MWe measure these characteristics in the sample and we
assume that they are independent of any other characteristics other than the ones
that are measured in the sample. In other words, if we find that a certain measure-
ment taken from the sample is independent of all other measurements of the sample,
then we assume the same holds true of the entire population; i.e., that our sample
is truly representative of the population in all respects. It takes courage to
make this assumption.

Having taken a set of measurements of a sample, we assume that the total
population has a similar set of measurements and these have certain identifying
features that we call parameters. This set of population measurements we will
call the distribution function and thus we have the parameters of the distribution
function. These are used to identify one distribution function from another. As
has been said, the populations are so large as to be immeasurable so that we
cannot know the exact values of these parameters. We can, however, estimate
them from the parameters of our samples. Whether or not these estimates are
realistic, we will never know; however, to use classical statistics we say they

are and Tet it go at that.



The parameters that we are talking about are named mean, variance, skewness
and kurtosis. The mean represents a balance point in the distribution function,

a fulcrum about which all the measurements of the population are balanced as to
weight. If this fulcrum happens to coincide with a point in the distribution that
equals half the total members of the population, we say that we have a symetrical
distribution, if it does not, we say the distribution is skewed (another param-
eter).

Since nothing in this world seems perfect, so are the members of a population
imperfect. They all differ, or vary from one another. The amount of this dif-
ference, or variance, is characteristic for a given population, so their distri-
bution functions can be characterized by this variance (another parameter).

Classical statistics assumes that these parameters are known or correctly
estimated and also they are the best descriptors of the population. If the in-
vestigator truly believes this, then classical statistical inference will provide
him with more assurance of certainty or uncertainty about his problem based on
his data. If he is in doubt about these assumptions, either because of past ex-
perience (personal probability again) or just plain reluctance to accept so many
assumptions about a large unknown population, the classical statistical inference
is of little assistance to him in his real problem.

In the classical approach to statistics, we define some population and we
assign to this population a set of descriptors or parameters (mean, variance,
etc.) Then we try to select a representative sample from this population so that
we can estimate its parameters from the sample, as has been pointed out this can
be risky business. In using order statistics we approach the problem from a
different direction. We first collect a sample, any set of values of some unknown

population. If we have such a sample, we assume only that the sample itself is



not the total population but has been drawn from some population. No further
assumptions are made about the population, except that it can be made countable.

Having done this, the population thus must have percentiles. In other words,
it can be divided into fractions, a fourth of the population, a half, three quar-
ters, etc. Since this population is too large to count, we must estimate its
percentiles from the sample. We can count the sample and divide it into percen-
tiles. It is not realistic to believe that a percentile of the sample would
exactly or even closely represent a corresponding percentile of the population.
Since we assumed nothing about the population, our first approximation of what
percentile of the population is represented by a percentile of the sampie must be
pure chance (a 50% probability).

The operation for achieving this is quite simple. First, each member of the
sample must be ordered according to its value with its neighbor, the swallest
being first, etc. Hence, we have a set of order statistics. A note should be
made here concerning the value of each ordered statistic. Since we are dealing with
percentiles of the population, the exact value of each member of the sample does
not have to be known exactly. It is only required that it be known whether or
not it is larger or smaller than its neighbor. This consideration can be most
useful in clinical medicine where numerical values are sometimes difficult to
establish, such as in grading of reflexes, amount of pain, etc.

To return to the problem at hand we have ordered the data set. For compu-
tational purpose we will Tabel each member j, so we have a set of j order stat-
istics and we will call the order number of each j, k. We can rank each member
of the sample then by simply computing:

Iy
sample rank =

where n = sample size



We have said, however, that this would not be a very realistic guess as to where
the sample member jj would rank in the total population. It turns out that a
simple calculation:

g3
T n +.4

yields the median rank of jk in the total population. That is it establishes

median rank , where n = sample size

what percentile of the total population the sample member represents with a 50%
probability of its actual rank being either higher or lower. The calculation

of the actual median rank and its mathematical derivation is quite complicated

and you are referred to an article by L.G. Johnson for a complete description (1).
(The portion of this article dealing with the mathematical derivation of median
ranks is included in Appendix IIIL.)

Empirically it has been determined that when a sample thus ranked is plotted
on Weibull probability paper (the abscissa is Tog- and the ordinate is log log),
and it produces a straight line, the population has a Weibull distribution function.

EWhen this is the case, it enables the use of the Weibull function in many tech-
niques of statistical inference. We shall discuss these methods later.

To return to order statistics, we have thus far determined the pure chance
ranking of our sample. Let us proceed to other probability Tevels for ranking
the sample into the total population. For example, we shall take the 5% and 95%
ranks (in clinical research a ranking of 1% and 99% may be preferred). For the
5% yank we shall determine at what percentile of the population a sample member
has only a 5% probability being less.. For the 95% rank, we shall determine the
percentile of the population that the sample haé a 95% probability of being iess.

Now we have drawn confidence bands for the population from which our sample

was drawn. We have established with a 90% probability, the range of the popula-



tion from which our sample was drawn. This gives us a tool for making statistical
inference about other samples we may have and their relation to the original
sample. In the process, we have made no assumptions about the population other
than it does exist and that it is countable.

The calculation of population ranks other than the median rank is not
simple but is mathematically sound. There are computer programs available that
will calculate any rank for any size sample. (2}

This then becomes a very powerful statistical tool for medicine because it
makes no requirements about statienarity, apriori and repeatable probabilities,

or functional dependence of the assumed population.

III The Weibull Distribution

We have just discussed order statistics and its usefulness because it is
not required to know the distribution function and its parameters. Before that
we talked about distribution functions in general and their parameters or ident-
ifying features. The point was made (hopefully) that in the game of statistics
the problem is matching, by inductive reasoning, a mathematical statistical
model to real life data. In classical statistics, this is difficult, if not
impossible. We just arbitrarily say we have done so by saying that the data has
been drawn from a population with a "normal" distribution. The risk of doing
this has already been emphasized.

In 1939 Waloddi Weibull postulated a very general cumulative distribution
function whose only requirements were that it be non-zero and non-decreasing.
In other words, the probability of acéounting for the total population was ever
increasing as you?"added up" your tota1.samp1e. This is done very simply by first
ordering the sample, just as in order statistics and then determining the median

rank of each member of the sample. Then a linear relationship holds between the



Togarithm of the values of the order statistics and the logarithm of the logar-
ithm of the cumulative percent of the population. It has been shown by exper-
ience, and this after all is the true test of worth, that data collected from
experiments in industry and biology do fit a Weibull distribution (3) (4) (5).

As we learn more about this distribution it is not difficult to understand
why Weibull called it a function of broad applicability for it is, in reality,

a whole family of distribution functions. The "normal" distribution function
is a Weibull distribution function, and so is the exponential. Thus, it is
not only a very useful model for statistical inference but it also is useful
in determining whether or not your data fits a more well known distribution
function.

The Weibull distribution also has parameters or characteristics which
describe it exactly. The first of these is the location parameter. The loca-
tion parameter describes the point of origin of the probability density function.
We will call this parameter alpha (a). The second Weibull parameter is the
shape parameter. This parameter which we will call beta (B) gives a numerical
value which equates to the general shape of the probability density function.
The third parameter is the scale parameter, theta (o) which defines the value
of your sample (x) at which 63.2 percent of your density function has been
accounted.

Since the shape parameter, beta, describes the shape of the probability
density function, it is the slope of the linear function of the cumulative
distribution function. It then becomes a simple procedure to estimate all three
Weibull parameters. The best alpha will give the best linear fit of the data.
This determines the beta and the theta is then self defined. From these param-
eters, the more familiar parameters of your distribution can be evaluated such as

mean (mu), variance (sigma sguared) and skewness.
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Previously we discussed the use of statistics for evaluating the data and
separating the information from the noise. The Weibull distribution function
is of considerable use in this respect particularly when we use its graphical
properties. If we have a sample set of data that represents a single function
it will plot on Weibull probability paper (abscissa-log, ordinate log-log) as
a straight line. If, however, the data represents more than one function, the
Weibull plot will be a mixture of straight lines. (3) By trial and error method
the sample points can be separated and replotted until each is identified with
its particular function. This is a simple yet proven method of separating a
mixed signal. This method can also be used to determine whether or not extreme
values in a sample really belong to the population under study and if they should
be discarded from further consideration.

For statistical inference there is a large set of procedures using the
Weibull parameters that can be used in hypothesis testing, comparison of samples
and predictions about sampling. This, as can be seen, is a very powerful function.
There is no need to assume a normal distribution for the data. Whether or not it
is normal can be determined by using the Weibull parameters. Therefore, by
using the Weibull function there is available the techniques of "classical"
statistical inference as well as many others which can be used when the classical

techniques are inappropriate.

IV  Bayesian Statistics

The last idea to be discussed is the idea of Bayesian statistics, in partic-
ular, the concept of "personal probability". There are many arguments concerning
the Bayesian approach to statistics even among the Bayesians themselves; (6)
however, in the realm of clinical investigation the idea and use of personal prob-
ability should not and cannot be avoided. The use of a statistical evaluation of

a clinical experiment is simply an extension of a physicians intuition about some
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problem based upon some defined observations. By the very institution of the
research, the organizing of the problem and the method of data collection are
unavoidably influenced by the clinician's intuition. It is more than proper that
this intuition should be properly utilized in the follow through of the project.
Indeed, in the final utilization of the results of such experimentation, the
experiment will only prove useful if in fact the results can be made compatible

or acceptable to the clinicians prior probability {intuition) of these resuits.

The arguments of classical statistics for the presence of apriori probabil-
jties, repeatable probabilities and independence in the complicated populations
of the real world are really based on a very simple and naive belief or intuition.

This belief or assumption rarely can survive close scrutiny of the facts.

In summary of the foregoing ideas concerning the use of statistics in medical
research it can be said that statistics should be simple, easily understood and
based on common sense. First of all the investigators own feelings should be the
basis for the design of the experiment and the evaluation of the results (Bayesian
statistics). The simplest approach is order statistics, where it is not required
that we make any assumptions about the character of the population that is being
investigated. If it is desired or necessary that we have a more complicated
model, then the Weibull distribution function is the most appropriate both from
its simplicity of use and its broad character that encompasses most of the distri-

bution function with which we are familiar,
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APPENDIX I

THE RANDOM SAMPLE

If there is some population of elements that has some characteristic

X that we wish to investigate, and the population has some distributiocn

function Fj (x), we suppose that for k = 1, 2, ..., and for an arbitrary
Kpe Ko oeees Xy there exists the conditional distribution function
= 1 < LI . LI
Fk (x'xl, Xgr o xk) P (X x| X ¥ 5 X x )

k+1 1 1 k k
If this supposition is true then we may choose some elements of a

sample of the population by a random method if:

(1) for every x we have P (X<x} = Fy (x)

(2) for k=1, 2, ..., n-1 and for arbitrary Xir Xpgr veey X We have

the equalities - P(Xk+l<x|xl=xl, s s wi Xk=xk) = Fk(x|xl, i s xk)

It must be noted that this equality is conditional:

Fk(x if iy =n-r Xy exists) = P(Xk+l<x if X1=%y, X=X, ---, Xk=xk)
In classical statistical inference an assumption is made that indeed for
X being a member of the population and x being a member of the sample popula-

tion, X Xk=xk or that P(Xl=xl’ e Xk=xk) > 0.99 (almost certainty).

1%y ---
In real life problems this is of necessity an intuitive or personal probability
since it cannot be established by observation.

Further assumptions are required for most classical tests of statistical

significance. One such assumption is that

Xy, X

= 1 (x-p) 2
vas X, * P (x) = exp - or
27 k O otz [202

that the characteristic X is normally distributed in the population. Again

since this cannct be observed we assume that since X, = =z X, =X

1 1" """ %k k



—u)e
(intuition) then %3, ... ¥, = Fo(x)= = exp G g) It has been observed
o% PE 20
that when k<30, the sample x;, ... X is not normally distributed. There-

fore when small random samples are used as a basis for classical inference
several intuitive assumptions must be accepted before beginning the testing
of the samples.

Tt can be further observed that samples, regardless of how large, when
drawn from bioclogical populations are also not normally distributed.
This should not be unexpected since many bioclogical populations display
infant mortality, random decay, or old age survival. In such cases the
characteristic X of the population or a sample x drawn from such a popula-

tion could not be normally distributed.



APPENDIX I1I

Parameters of the Distribution of a Random Varxiable

There are four kinds of parameters of a distribution of a random variable:

(1) moments
(2) functions of moments
{3) order parameters
(4) functicng of order parameters
Moments
The moment of order k of the random variable X is:
m = E (Xk)
For the discrete distribution
k)

s k
E (X = % X1 Py

For the continuous distribution

E (xK) = f®xKf(x)dx

If my = E[X—c]k, and c=m; = E(x), then y, = E[X—E(X)]k are central moments

when ¢ = m; = E(X) =0

Ii

Then uy = E[X-E(X)] = E[X-mj] = EIX]-m

ml—ml = 0
The central moment of the first order, Ui, is called the mean of the
distribution function of X (the population). It follows that

E[x-E(X)]% = E[(X-ml)2]

K2

E{X] %-2m1 E (X) +m1 >



The central moment of the second order, U, is called the variance of X

2

and is denoted by 07.

The central moment of the third order, uj ig the third power of l.

Uqy EEX—E(X)13 = E[(X—ml)3]

3

B (X3) —3mlE (X2) + 31'[112]'3 [¥] -y

m3a3mlm2+3m13—ml3

]

- . 3
= mg 3mlm2+2ml

Tf the distribution of X is symmetrical then all odd moments are zZeroc,

but if this

is not the case then a function of the third central moment,

My, is defined as o = E%.and is called the coefficient of skewness.

o)

Order Parameters

The value

is called

The walue

is called
The value
of origin
a Weibull
The value

parameter

x satisfying the inegualities

P{X<x} >1/2, P(x>x)>1/2

the median of the distributicn of the random variable X.

x satisfying the inequalities

P(X<x) >p, P(X>x)>1-p, (0<p<l)

the quantile of order p.

of x satisfying the equality P(X<x) = 0O is called the point

of the distribution of X. This is called the parameter o of
distribution function.

x satisfying the eguality P(X=x)} = 0.623 is called the location

of a Weibull distribution.



APPENDIX IT1

Order Statistics

Let X1, X34 «-- X, be an n dimensicnal random variable.

Let Ryr Koy eee X be a sample of values drawn from Xl’ X2, S

n
Arrange the sample X1, X3, ... ¥X; in such a way that Xpy» Ryor «o Xpy
satisfies the inegualities xrl§;r2§_... fgrn Then f [x(-®<u<=)] = ¢ for
x%xypq and £ [x(=o<x<w)] = ,%.(m=1,2, ...n) for x»x,,. By definition
xrn<x=sn(x) and is called the "empiriecal distribution function" of x.
From these assumptions it follows that P{X,<x) = F(x) = p = constant
(r =1, 2, ...n)

Hence, for a fixed value of x, S, (x) is the frequency of successes in
the Bernoulli scheme. Thus

pls 0 =8| = — 2 [Fx) 1™ [1-F(0) 1"
n m! (n-m} !

Let the function of (Xl’ X2, $e% Xn) which takes the value er in each

possible sequence Ryr Xp¢ =-- Xy be called an "order statistic" and be noted

by ;k(n). The number k is called the "rank" of Ck(n).

(n)

I

Let ¢p,(x) = F(gy )

n
Ip [%n(x) —-ég
m=k

n

P(gk(n) <x) = P‘:Sn(x)z%

i
I

— n! m.. n-m
then ¢kn(X)_m;k T | [F(x)] [1-F{x)]
agssume f(x) = F'(x) exists

then £}, (x) of Ck(n)exists

therefore fkn(x) = e l?f( ol [F(x)]k“l[l—F(x)]n—kf(x)
-1) I {n-k)!



Median Ranks of Order Statistics

For the derivation of median ranks we are reprinting the paper by Leonard

G. Johnson from Industrial Mathematics, vol.2, 1951.

The c-Rank of Order Statistics

A method for approximating the c-rank of any order statistic from any
sample of size N has been presented by L.G. Johnson in the Statistical Bul-
letin, vol.l, bull. 3, July 1971.

It is presented here:

Let N = sample size

let j order statistic

let ¢

confidence index (0<c<l)
let Zc(j/N) = ¢-rank of jth order statistic

let Z o

median rank of jth order statistic in N

n

i:;é.(Bernard‘s formula)
N+.4

.45N'6c(j—l)(N—j)

define Ay{j) = 1 +
N (N-1) 2

1
l-c
JB (J)

(= sty)
Log (1_.;__1_)

3A(3)

define Y =

then 2 (i/N) = 1 - [1 - Z g4 (5,0 1M



DERIVATION OF THE MEDIAN RANKS

Deriving the Median Ranks

Assume the following situation is given:
A sample of n observations in numerical order: 0x1, 0X2, OX3= ceees gXpe
Probability density function of population: f(x) {unknown)
Cumulative distribution function of population: F{x) (unknown)
We define,
True rank of OX] s Ly = F(OX]) {unknown)

True rank of gX, = Z, = F(OXZ) {unknown)

|
]

True rank of gX, = 75 = F(OX3) {unknown)

In general, True rank of nX; = Z F{aXs) (unknown)
0%3 n 03

j=
Since the true rank of an observation is unknown, the best that we can do is
to estimate what that true rank is. Consider next the set of all possible
samples of size n from the same population. The table below is a partial list

of these samples:

Sample 1: OX](]), 0X2(1), 0X3(]) 3 Oxn(])
Sample 2: OXT(Z), OXZ(Z), 0X3(2) s OXn(Z)

Samp]e K OX](3), 0X2(3), OX3(3) ceeny an(B)

Sample r: OX1(r), OXZ(F)



The true ranks of the jth observations in these samples of size n may be Tisted
as follows:

F(ij(])) = Z~(])

F(Oxj(2)) = 7.(2)

n-j
F(ij(3)) = nzj(3)
F(Oxj(r)) = an(P)

We shall show that these ranks are distributed according to the probability

density function

_ n'
WoZs) = GATE (mgyr

J-1 (q_ 7 yn-J
2,970 (1-,2)

This follows from the multinomial theorem, as demonstrated below:

Divide the entire population into the following three regions:

e, F(ij) o Tt 'F(UXJ)CIX -+ -I—F(OXJ) e

Region 1 Region 2 Region 3

0X;3

4 Oxj + dx

The expressions F(gx;), fgx;)dx, and 1 - F(gx;) represent the probabilities
that a single observation would fall into regions 1, 2, and 3, respectively.

Therefore, it follows that the probability of exactly (j-1) values falling



into region 1, and exactly one value falling into region 2, and exactly (n-j)

values falling into region 3 is given by the expression

5 [FCGXO T fGx)dx . [1 - F(x,)In-3
TENETE TS 0 i

(This is an application of the multinomial theorem on joint
probabilities.)

Now put F(OXJ) = nZj - Then, f(OXj)dx = anj :

Hence, the above probability becomes

n' 3-1 - 7334 7.
AN RS MU

Therefore, the probability density function of an is

ey © (j-]):nin-j): nZ597! (1=pZ5)"73

By definition, the mean value of an is

1 1

: Vd Z: = . n: J-1(- 72034 7.

./' s 9(nZ3)dnZ; ./' R TR T M T
0 0

This integral can be reduced to a Beta function, and its value turns out to be
j/{n+1). This is the mean rank of the jth observation in n. We could use
this as an estimate of the true rank of the jth observation in n, but in cer-
tain applications the median value of an has been found to be more useful as
an estimate. Let us now proceed to find the median value of an, i.e., the

median rank of the jth value in n.



By integration of equation (A), we find that the cumulative distribution func-

tion of an is

3 =1 - (12 onza(1ezn-1- nt8) 5 2 n-2_ _nld-1) - 54 -j+

(B)
(Note: n(2)=n(n-1) n(3)=n(n—1)(n-2), etc., .. n(d-1)= n{n-1)(n-2)...{(n-j3+2}.)

The median value of an is found by putting e(nzj) = 1/2 1in equation (B) and then

solving for an, i.e., by solving the following equation for an:

: : . : 1
1 - (1-pZ)" -nnzj(l-nzj)”'l-ﬂéilnzg (1pZy)"2-.. .- %é%%%%nzj3'1(1-nzj)"'3+1 i
(C)

Such an equation contains exactly one real root between O and 1, and Table 1 con-
sists of such roots for n and j up to 20. The table is constructed by solving
equation (C) exactly for j=1 and for j=n, for each value of n up to 20. The
intermediate values in each column are then filled in by forming an arithmetic
progression. When this is done, we find that in every case .495 g_G(an) & 5056,
which 1s good enough for practical purposes.

For n>20 the following convenient formula may be used:

j - (1-1n2) - (21n 2-1)(%5%)
n

a3y = > where x,(Jj) denotes the median rank of

the jth value in n.



APPENDIX IV

TEE WEIBULL DISTRIBUTION

If P(X<x} = F(x)

then F{x) = l-e~®{x)

The probability of the occurrance of some event x from a set of events
Xpr Xpr o a-- Xy is defined by:
P, = L-e D¢ (%)

The function ¢ (x) must be specified with the necessary conditions that

it be a positive, non-decreasing function, vanishing at some point > zero.

B
d(x) = " (gfﬂlﬁ_) satisfies these reguirements.
0-a
Then F{x) = l—e_(§:§3 is a three parameter Weibull distribution func-

tion.
. fx\ B
If alpha is assumed to be zero then F(x} = 1l-e B 1s a two parameter
Weibull distribution function.
For the two parameter Weibull distribution we may show that the shape

parameter beta is the slope of the linear function Y = BX+A when plotted on

Weibull probability paper (ecrdinate-log log and abscissa-log) as follows:
)"
1-e g
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F(x)

Hi

1-F (X)

i
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1)
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1-F{x}

m___;.___:(z)ﬁ
1-F(x) 8



is:

in ln—u—&———-= £ In x-8 1n ©

1-F {x)
1
let Y = 1ln In  —2
1-F ()
let X = 1n x
let A = -B 1In 8
let B = B
then ¥ = BX+A

The probability density function of the two parameter Weibull Function
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